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[1] We use Monte Carlo error analysis to illustrate the impact of measurement errors in
field-estimated hydraulic properties on predictions made with 1D and 3D unconditional
stochastic models of unsaturated flow and transport. Monte Carlo simulations are
conducted across a series of simplified artificial realities completely described by the
Gardner–Russo parametric model. The mean values of properties are varied between
simulations to elucidate the relationship between true properties and prediction errors.
Hydraulic properties are reestimated by simulating tension infiltrometer measurements in
the presence of small simple errors. Two types of observation error are considered, along
with one inversion-model error resulting from poor contact between the instrument and the
medium. Errors in the spatial statistics of hydraulic properties cause critical stochastic
model assumptions to be violated, limiting the usable parameter space for model
predictions. Even where critical assumptions are valid, stochastic model predictions show
significant error, and the magnitude and pattern of error changes with the true property
means, the flow conditions, and the type of measurement error. Mean velocities may show
errors up to an order of magnitude. The velocity variance is overestimated by up to three
orders of magnitude during 3D flow and eight orders of magnitude during 1D flow. The 1D
velocity integral scale is underestimated by as much as five orders of magnitude. The
estimates for 1D longitudinal macrodispersivity are surprisingly robust and show relatively
small error across most of the parameter space. INDEX TERMS: 1869 Stochastic processes; 1875

Unsaturated zone; 1829 Groundwater hydrology; 1832 Groundwater transport; KEYWORDS: stochastic models,

unsaturated zone, geostatistics, spatial bias, measurement error, inversion model error
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1. Introduction

[2] Predictive stochastic flow and transport models are
parameterized with the spatial statistics of measured, or
estimated, hydraulic properties. The accuracy of predictions
depends on the accuracy of input spatial statistics and
ultimately the accuracy of the property estimates used to
determine these statistics. Errors in property estimates are
difficult to quantify and are often unknown because the
physics of property measurements are highly complex and
variable. A single property estimate can be affected by a
combination of errors in simple observations and inversion-
model errors, including errors in governing equations,
boundary conditions, initial conditions, and constitutive
relationships. The type and magnitude of these errors may
vary spatially, with the true properties of the sampled

medium, and temporally, with the sampling conditions.
Simple uncorrelated random errors affecting measurements
of hydraulic properties can cause a large systematic dis-
tortion, or bias, in spatial statistics determined from property
data [Holt, 2000; Holt et al., 2002]. When biased spatial
statistics are used to parameterize stochastic models of flow
and transport, stochastic model predictions will also show
systematic error. The extent and nature of this error has not
been previously investigated.
[3] In this paper, we use error analysis techniques to

explore the relationship between errors in field-estimated
unsaturated hydraulic properties and stochastic model pred-
ications for unsaturated flow and transport and to illustrate
some consequences of using field-estimated property data to
parameterize predictive stochastic models. We conduct
Monte Carlo error analyses across a series of simplified
artificial realities, where constitutive relationships are com-
pletely known. We vary the mean values of hydraulic proper-
ties between realities to elucidate the connection between the
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true properties and bias in stochastic model predictions.
Because it is virtually impossible to develop a complete set
of error models for measurement of unsaturated hydraulic
properties, we choose to conduct our error analyses with a
limited number of property measurement errors.
[4] Our procedure is straightforward. For each artificial

reality, we generate spatially correlated random fields of
properties and estimate the properties using simulated field
measurements subject to known random errors. We then
determine the spatial statistics of both the true and estimated
properties and use these statistics to parameterize stochastic
models. We then assess the errors in these stochastic model
predictions. The procedure is repeated for all realities to
illustrate the sensitivity of prediction errors to the true spatial
statistics and the type of measurement error affecting prop-
erty estimates.
[5] In all of our realities, we assume that Richard’s

equation is valid and that unsaturated hydraulic properties
are completely described by the Gardner–Russo [Gardner,
1958; Russo, 1988] parametric model. We also assume that
the log saturated hydraulic conductivity and the Gardner
[1958] parameter are normally distributed second-order
stationary random functions completely characterized by
their mean, variance and an exponential covariance func-
tion. For convenience, we assume that the Gardner–Russo
tortuosity parameter is equal to zero. No specified cross
correlation between parameters is assumed. All property
estimates result from simulated tension infiltrometer meas-
urements, a simple field device for estimating both the
hydraulic conductivity and the Gardner [1958] parameter.
We assume that measurements are made under steady state
conditions and that subsample-scale heterogeneity does not
exist. To minimize the degrees of freedom in our problem,
we allow only two types of observation error (transducer
errors) to affect property estimates, along with one inver-
sion-model (boundary condition) error resulting from poor
contact between the instrument and the medium. In the
absence of errors, tension infiltrometer measurements return
error-free estimates of spatial statistics for the hydraulic
conductivity and the Gardner [1958] parameter. All loca-
tions in a reality are sampled to eliminate errors in spatial
statistics due to nonideal sampling locations, thereby insur-
ing that bias in spatial statistics and stochastic model
predictions reflects only property measurement errors.
[6] We use two different unconditional stochastic models

for this analysis, each representing end-members in the style
of heterogeneity. The first is based on the seminal work of
Yeh et al. [1985a, 1985b], where it is assumed that hydraulic
parameters are statistically isotropic. The second model is
that of Zhang et al. [1998], where the hydraulic parameters
are perfectly layered. Geologic materials lie between these
two extremes, with most materials showing distinct layer-
ing. These two models are consistent with the parametric
models used in our assumed realities.
[7] We evaluate errors for several stochastic model pre-

dictions, specifically estimates of the mean, variance, and
integral scale of the fluid velocity and the longitudinal
macrodispersivity. We focus on the ensemble statistics for
the velocity, because velocity fields or moments are required
input for contaminant transport calculations. The mean
velocity is inversely proportional to mean travel time. The
ensemble velocity variance measures the point variability in

velocity over all possible realizations and is, therefore, a
metric for the uncertainty in travel time over short travel
distances. The integral scale of the velocity is a measure of
the continuity of the ensemble flow field. The longitudinal
macrodispersivity can be related to the uncertainty in mean
travel times, especially over large travel distances.

2. Theoretical Background

[8] For calculating the mean, variance, and integral scale
of velocity and the longitudinal macrodispersivity, we mod-
ify steady flow stochastic models presented by Yeh et al.
[1985a, 1985b] and by Zhang et al. [1998]. We extend the
work of Yeh et al. [1985a, 1985b] and derive a mean and
variance of the velocity for 3D unsaturated flow through
statistically isotropic media under mean unit-gradient con-
ditions with spatially varying effective moisture content.
Zhang et al. [1998] developed models for unit-gradient flow
through perfectly stratified media (1D flow), including
expressions for the mean and variance of velocity. For the
model of Zhang et al., we derive additional expressions for
the velocity integral scale and the longitudinal macrodisper-
sivity. We review critical components of these models and
their extensions below.
[9] These steady flow models satisfy continuity

r � q xð Þ ¼ 0 ð1Þ

and Darcy’s law

qi xð Þ ¼ �K xð Þ � @h xð Þ
@xi

� di1

� �
ð2Þ

where q is the specific discharge vector, h(x) is the absolute
value of the tension head, K(x) is the unsaturated hydraulic
conductivity scalar which is a random space function, and
di1 = 1 when i equals 1, representing the vertical direction,
and di1 = 0 otherwise. We assume that K(x) is lognormally
distributed and that Y(x) = ln[K(x)], which may be
decomposed into a mean and perturbation, Y(x) = hY(x)i +
Y 0(x). Similarly, we have qi(x) = hqi(x)i + qi

0(x) and h(x) =
hh(x)i + h0(x), and (2) can be rewritten as

hqi xð Þi þ q0i xð Þ ¼ KG xð Þ 1þ Y 0 xð Þ þ Y 02

2
þ . . .

� �

� @hh xð Þi
@xi

þ @h0 xð Þ
@xi

þ di1

� �
ð3Þ

where KG(x) = exp[hY(x)i] is the geometric mean of K(x).
Taking the expected value of (3) and retaining terms up to
first order gives

hqi xð Þi ¼ KG xð ÞJi xð Þ ð4Þ

where Ji(x) = (@hh(x)i/@xi) + di1 is the mean hydraulic
gradient in the direction xi. Following the approach taken
for most stochastic models [e.g., Yeh et al., 1985a, 1985b;
Russo, 1993, 1995; Harter and Yeh, 1996; Yang et al., 1996;
Zhang et al., 1998], we assume that flow is dominated by
gravity and that Ji(x) = di1. Subtracting (4) from (3) and
retaining terms up to first order yields

q0i xð Þ ¼ KG ji xð Þ þ di1Y 0 xð Þ½ � ð5Þ
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where ji(x) = �dh0(x)/@xi is the perturbation in the gradient.
The single point covariance of the specific discharge s2qij =hqi0(x)qj0(x)i is

s2qij ¼ KG2

s2jji þ di1 s2Y 0ji
þ dj1 s2Y 0 jj

þ di1dj1s2Y 0

h i
ð6Þ

where s2jij is the single point covariance of the gradient in the i
and j directions, s2Y 0ji

is the single point covariance between
Y 0(x) and ji(x), and sY0

2 is the variance of Y 0(x). The seepage
velocity, ui is related to the specific discharge, qi, by

ui xð Þ ¼ qi xð Þ
qe xð Þ ð7Þ

where qe = q � qim is the effective volumetric moisture
content, q is the volumetric moisture content, and qim is the
immobile moisture content. We follow Zhang et al. [1998]
and assume that immobile moisture does not affect advective
transport.With qe = hqei + qe0 , the velocity (7) can be written as

ui xð Þ ¼ hqii þ q0i xð Þ
hqei

1� q0e xð Þ
hqei

þ q02e xð Þ
hqei2

þ � � �
" #

ð8Þ

To the first order, the mean velocity is

huii ¼
hqii
hqei

; ð9Þ

the perturbation in velocity is

u0i xð Þ ¼ q0i xð Þ
hqei

� hqiiq0e xð Þ
hqei2

; ð10Þ

and the variance of the velocity is

s2uij ¼
1

hqei2
s2qij � huiis2qjqe � hujis2qiqe þ huiihujis2qe
� �

; ð11Þ

where s2qiqe is the single point covariance between the specific
discharge, qi, and the effective moisture content, qe, and s2qe is
the variance of the effective moisture content. In deriving (9),
it is assumed that s2qe /hqei

2 is small (
1).
[10] In order to derive the statistical moments required for

parameterizing (9) and (11), we must specify constitutive
models for K and qe as functions of tension h. Because of its
mathematical simplicity, the Gardner–Russo [Gardner,
1958; Russo, 1988] model is commonly used for analytical
modeling of stochastic unsaturated flow and transport [e.g.,
Yeh et al., 1985a, 1985b; Russo, 1993, 1995; Indelman et
al., 1993; Yang et al., 1996; Zhang et al., 1998]. The
Gardner [1958] model for unsaturated hydraulic conductiv-
ity is

K xð Þ ¼ Ks xð Þ exp �a xð Þh xð Þ½ � ð12Þ

where a(x) is the Gardner [1958] parameter defined as the
slope of ln[K(x)]/h(x), and Ks(x) is the saturated hydraulic
conductivity. The Russo [1988] moisture content function is

qe ¼ qs � qrð Þ 1þ 0:5a xð Þh xð Þ½ �exp �0:5a xð Þh xð Þ½ �f g2= mþ2ð Þ

ð13Þ

where m is a parameter related to media tortuosity and qs is
the saturated moisture content. We assume that a(x) and the
log transform of the saturated hydraulic conductivity f (x) =
ln[Ks(x)] are normally distributed, second-order stationary
random space functions, each consisting of a constant mean
and a spatially varying perturbation: f (x) = h f i + f 0(x) and
a(x) = hai + a0(x). Our previous studies [Holt, 2000; Holt
et al., 2002] suggest that measurement errors can induce an
apparent correlation between estimates of a(x) and f (x)
even when none exists. Nevertheless, we assume that the
spatial covariance between a(x) and f (x) is zero, because it
is difficult to define a physically meaningful positive
semidefinite cross-covariance function. The log transform
of (12) is

Y xð Þ ¼ hFi þ f 0 xð Þ � hai þ a0 xð Þ½ � hhi þ h0 xð Þ½ � ð14Þ

with, to the first order

hY i ¼ hFi � haihhi ð15Þ

Y 0 xð Þ ¼ f 0 xð Þ � hhia0 xð Þ � haih0 xð Þ ð16Þ

s2Y 0 ¼ s2f þ hhi2s2a þ hai2s2h � 2hais2fh þ 2hhihais2ah ð17Þ

where sf
2 is the variance of ln[Ks(x)], sa

2 is the variance
of a(x), sh

2 is the tension head variance, sfh
2 is the point

covariance between f (x) and h(x), and sah2 is the point
covariance between a(x) and h(x). In deriving (15), we
assumed that sah

2 is small (
1). Because we assume that
the hydraulic head is a stationary random process, the
point covariance between the head perturbation and its
gradient s2hji is identically equal to zero, and the point
covariance between Y 0(x) and ji(x) is then

s2Y 0ji
¼ s2fji � hhis2aji ð18Þ

where s2fji is the point covariance between f (x) and ji(x)
and s2aji is the point covariance between a(x) and ji(x).
The first-order mean, perturbation, and variance of the
effective water content are [Zhang et al., 1998]

hqei ¼ qs � qrð Þexp �haihhi= mþ 2ð Þ½ � 1þ 0:5haihhi½ �2= mþ2ð Þ ð19Þ

q0e xð Þ ¼ hqei
2þhaihhið Þ mþ2ð Þ haihhi2a0 xð Þ þ hai2hhih0 xð Þ

� �
ð20Þ

s2qe ¼
hqei2

2þ haihhið Þ2 mþ 2ð Þ2

� hai2hhi4s2a þ 2hai3hhi3s2ah þ hai4hhi2s2h
� �

ð21Þ

The point covariance between qi and qe is

s2qiqe ¼
hqeiKG

2þ haihhið Þ mþ 2ð Þ

�
di1hai2hhis2fh þ haihhi2s2aji � 2di1hai2hhi2s2ah

�di1haihhi3s2a � di1hai3hhis2h

 !
ð22Þ
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[11] We assume that the spatial structure of f (x) and a(x)
are both completely described by an exponential covariance
function

Cp rð Þ ¼ s2p exp � rj j
lp

� �
ð23Þ

where Cp(r) is the covariance function as a function of
separation distance r, sp

2 is the variance, and lp is the
correlation length of parameter p. With this covariance
function we are able to derive relationships for, sh

2 , sfh
2 ,

sah
2 , s2fji , s2aji , and s2ji (Table 1 with (24)–(37)) and

determine the ensemble mean and variance of the velocity,
which can be related to contaminant transport times.
[12] The integral scale of the vertical velocity in the

vertical direction is

Iu1 ¼
1

s2u1

Z1
0

Cu1 rð Þ dr ð38Þ

where Cu1ðrÞ is the vertical velocity covariance. Using
Zhang et al.’s [1998, equation (61)] expression for Cu1ðrÞ
for (11), the integral scale for the velocity during 1D vertical
flow can be shown to be

Iu1 ¼
hu1i2hai2hhi2s2f lf

2þ haihhið Þ2 mþ 2ð Þs2u1
ð39Þ

The longitudinal macrodispersivity can be defined as

A1 ¼
1

hu1i

Z t

0

Cu1 hu1it0ð Þdt0 ¼ 1

hu1i2
Zz
0

Cu1 rð Þdr ð40Þ

where z = hu1it is the mean travel distance of a solute
plume. For very large mean travel distances (z ! 1), A1

approaches a constant value given by

A1 ¼
s2u1
hu1i2

Iu1 ð41Þ

3. Methods

[13] We employ a Monte Carlo approach to illustrate the
impact of small simple property measurement errors on
stochastic model predictions. We assume that Richard’s
equation (1) and (2) is valid. We also assume that (12)
describes the unsaturated hydraulic conductivity, (13)
describes the moisture-characteristic function, and the
parameter m in (13) is known and equal to 0. We assume
that log saturated hydraulic conductivity f (x) and the
exponential parameter a(x) are second-order stationary,
isotropic Gaussian random fields completely described by
(23). We generate 221 pairs of f (x) and a(x), with cov[ f (x),
a(x)] = 0, and vary the means of f (x) and a(x) between
pairs. Each combined field of f (x) and a(x) constitutes an
artificial reality. At every spatial location in a reality, we
simulate tension infiltrometer measurements in the presence
of simple errors and reestimate f (x) and a(x). We calculate
the spatial statistics (mean, variance, and correlation length)
for the estimated fields of f (x) and a(x). These spatial
statistics along with the true spatial statistics of the fields are
used to determine error in the ensemble statistics of velocity
and the macrodispersion coefficient. Relevant details are
discussed below.
[14] For each Monte Carlo simulation, we generate over

262,000 parameter pairs (a 512 by 512 random field) of f (x)
and a(x), with a fixed mean and variance. The means of f (x)
and a(x) are varied between simulations, while the variance
of f (x) remains arbitrarily fixed at 1.0 and the coefficient of
variation (CV) for a(x) is fixed at 0.1 to prevent negative
values of a(x) in the generated field. Because the stochastic

Table 1. Required Stochastic Functions for the Gardner–Russo Model

Statistic 3D isotropica 1D/3D perfectly stratifiedb

sh
2 s2

f

hai2 F1 lf

� �
þ hhi2s2a

hai2 F1 lað Þ (24)
s2
f
lf

1þhailfð Þhai þ
hhi2s2ala

1þhailað Þhai (25)

sfh
2 s2

f

haiF1 lf

� �
(26)

s2
f
lf

1þhailfð Þ (27)

sah
2 �hhis2a

hai F1 lað Þ (28) � hhis2ala
1þhailað Þ (29)

sfj
2 �hhis2a

hai F2 lað Þ (30)
s2
f

1þhailfð Þ (31)

saj
2 �hhis2aF2 lað Þ (32) � hhis2a

1þhailað Þ (33)

sj
2 s2f F3 lf

� �
þ hhi2s2aF3 lað Þ (34) N/A

F1(lp)
a 1� 2ln 1þhailpð Þ

hailp þ 1
1þhailp (35)

F2(lp)
a 2

hai2l2p
1� 2ln 1þhailpð Þ

hailp þ 1
1þhailp

� �
� 1

1þhailp
(36)

F3(lp)
a 1

2hailp �
1

hai2l2p
þ 2

hai3l3
p

� 5

hai4l4p

� 1

hai5l5p
hailp

1þhailp � 6ln 1þ hailp

�� ��� �
(37)

aFrom the work of Yeh et al. [1985a, 1985b, 1985c].
bFrom the work of Zhang et al. [1998].
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models require a normal distribution for a(x), our treatment
of a(x) differs from that of Holt et al. [2002] where a(x)
was lognormally distributed with a variance of ln(a) equal
to 1.0. Mean values vary across a parameter space repre-
sentative of poorly to well-sorted silty sand to very coarse
sand. We vary the mean of a(x) from 10�4 cm�1 (poorly
sorted) to 0.1 cm�1 (well sorted) and the geometric mean of
the saturated hydraulic conductivity Ks

G = exp(h f (x)i) from
10�5 cm/s (sandy silt) to 0.1 cm/s (coarse sand).
[15] Random fields are generated using the FFT method

[e.g., Robin et al., 1993]. We employ a 2D, isotropic,
exponential variogram model

g rð Þ ¼ s2 1� exp � r

l

� �h i
ð42Þ

where s2 is the variance of the random process and l is the
correlation length. In stochastic models, it is often assumed
that the correlation lengths of unsaturated parameters are the
same [e.g., Yeh et al., 1985a, 1985b, 1985c; Mantoglou and
Gelhar, 1987a, 1987b], and for convenience, we set all
correlation lengths equal to 10 length units (grid increments).
Across our entire parameter space, we conduct 17� 13 = 221
Monte Carlo simulations, in which the mean of f (x) is
incremented by steps of size 0.576 (17 values) and the mean
of a(x) is multiplied by 1.78 between simulations (13
values).
[16] For the large domains used here, fields generated by

the FFT method preserve the theoretical statistics (mean,
variance, and correlation length) reported above. Field
mean values differ by less than 1% from the theoretical
mean values. On average, field variances and correlation
lengths derived by fitting (42) differ from the theoretical
values by 2% and 8% respectively. Pairs of f (x) and a(x)
fields have an average correlation coefficient of�0.018. It is
important to note that the actual field statistics, not the
theoretical values, are considered as ‘‘true’’ values for our
error analysis.
[17] We simulate tension infiltrometer measurements in

the presence of simple errors to provide estimates of f (x)
and a(x). Many workers have used the tension infiltrometer
to estimate the spatial statistics of these parameters [e.g.,
DOE, 1993; Mohanty et al., 1994; Jarvis and Messing,
1995; Shouse and Mohanty, 1998]. It is a simple device for
applying a constant (negative) pressure boundary condition
to unsaturated soil. The design and operation of the tension
infiltrometer is described by Ankeny et al. [1988]. With
knowledge of two applied pressures and corresponding
observed steady state flux rates, parameters f and a can
be estimated using the analytical approximation of Wooding
[1968]. We assume that Wooding’s [1968] approximation is
exact, and that subsample-scale heterogeneity does not
affect tension infiltrometer measurements.
[18] In this illustration we limit the number of tension

infiltrometer errors and consider only two error scenarios. In
the first, pressure transducer errors (there are two trans-
ducers used to estimate the tension infiltrometer flux rate
and one transducer used to estimate the applied pressure at
the disk source) yield errors in observations of flux rates and
applied pressures. The second scenario includes these two
observation errors but adds an error in the contact between
the disk and the medium. The procedures for reestimating
f (x) and a(x) for each of the error scenarios are summarized

below, but the reader is referred to the work of Holt et al.
[2002] for details.
[19] Using the tension infiltrometer, f (x) and a(x) can be

estimated from two observed steady state flux rates, Q̂1 and
Q̂2, at the applied tensions ĥ1 and ĥ2. We assume that the
tension values employed for each observation are estimated
to be ĥ1 = 2.0 cm and ĥ2 = 7.0 cm (common values used in
tension infiltrometer studies) and that ĥ = h + x, where x is a
random error. The true tensions (hn) are calculated by
subtracting x from, ĥn for n = 1,2. We assume tensions are
determined from a pressure transducer at the disk source, and
the value of x is determined by randomly sampling a mean-
zero normal distribution with sx

2 = 0.4 cm2 [Holt et al.,
2002]. Given hn, a, and Ks = exp( f ), we calculate the true
flux from the tension infiltrometer using [Wooding, 1968]

Qn ¼
Ks

a
e�ahn aþ 4

prd

� �
pr2d ð43Þ

where rd is the radius of the disk and is equal to 10 cm.
Once the true flux rate is determined, we calculate the
estimated flux Q̂n by adding a mean-zero, normally
distributed error with sQ

2 = 0.00165 cm6/s2 [Holt et al.,
2002] (estimated sQ

2 from laboratory tension infiltrometer
data presented by Ankeny et al. [1988]). Sampling locations
where Q̂1 � Q̂2 are discarded, as they would be in practice.
[20] When contact errors are considered, we assume that

all contact error occurs at the outside of the disk, effectively
reducing the disk radius. We also assume that contact errors
only occurwhenmeasurements aremade at the higher tension
(h2). Q̂1 is estimated using the procedure outlined above,
while Q̂2 is estimated using the same variance for sQ

2 but is
estimated using an altered disk radius rd* ¼ rd

ffiffiffiffiffiffiffiffiffiffiffi
1� g

p
, where

g is randomly sampled from a uniform distribution over 0.0 to
0.1. This means that the disk radius may be reduced from 10
cm to a minimum of �9.5 cm.
[21] Once the estimated tensions (ĥ1 and ĥ2) and steady

state flux rates (Q̂1 and Q̂2) are determined, the relative
permeability parameter, a, is then estimated with [Reynolds
and Elrick, 1991]

â ¼
ln Q̂1=Q̂2

� �
ĥ2 � ĥ1

ð44Þ

and f is estimated with

f̂ ¼ ln
â Q̂1 e

âĥ1

âpr2d þ 4rd

 !
ð45Þ

This procedure is repeated for all points in a reality.
[22] The mean, variance, correlation length are deter-

mined for each of our 221 sets of true fields [ f (x) and
a(x)] and estimated fields [ f̂ (x) and â(x)]. Local vario-
grams are calculated using the GSLIB subroutine gam2
[Deutsch and Journel, 1992]

g rð Þ ¼ 1

2N rð Þ
XN hð Þ

i¼1

U xi þ rð Þ � U xið Þ½ �2 ð46Þ

where N(r) is the number of samples in lag interval r and
U(x) is the random field. The variograms are fit, using a
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Levenberg–Marquardt algorithm, with the exponential
variogram model

g rð Þ ¼ s2 1� exp � r

l

� �h i
þ s2n ð47Þ

where l is the estimated correlation length, s2 is the variance
(referred to as the model variance by Holt et al. [2002]), and
sn
2 is the nugget variance. Variogram fits are inspected to

insure meaningful variogram model parameters. When a
variogram is constant for all lag distances we refer to it as a
‘‘nugget variogram’’ in which s2 = 0.0 and l = 0.0. Once
these spatial statistics are determined, the mean and variance
of the 3D and 1D velocity are calculated for all 221 sets of
both the true and estimated fields using (9) and (11) and the
appropriate subsidiary equations. Similarly, the 1D velocity
integral scale and longitudinal macrodispersivity are deter-
mined from (39) and (41), respectively. Errors are quantified
in contour maps of parameter space, using the ratio of the
‘‘estimated/true’’ value.

4. Errors in Spatial Statistics

[23] The stochastic models used in this illustrative study
are parameterized with the spatial statistics for estimated log
saturated conductivity f̂ and the exponential parameter â.
We first review the errors in these spatial statistics since
they directly contribute to errors in stochastic model pre-
dictions. These errors differ from those presented by Holt et
al. [2002]. Here we assume a normal distribution for a(x)

with a CV fixed at 0.1, while Holt et al. [2002] assumed that
a(x) was lognormally distributed, with a variance of 1.0.
Their lognormal distribution translates to a var[a(x)] = 5 �
10�8 cm�2, at a geometric mean a of 10�4 cm�1, and a
var[a(x)] = 5 � 10�2 cm�2, at a geometric mean a of 0.1
cm�1. In contrast, the normally distributed a(x) used here
has a much smaller variance, ranging from 10�8 cm�2 at
hai = 10�4 cm�1 to 10�4 cm�2 at hai = 0.1 cm�1.
[24] Holt et al. [2002] observed that both observation and

contact errors lead to biased estimates of the exponential
parameter hâi and log saturated conductivity h f̂ i, which are
overestimated, especially when the actual values of satu-
rated conductivity h f i and hai are both small. Our results
here are similar, as shown in the parameter space plots of
error presented in Figure 1. The observation error scenario
is on the left of the figure and the contact error scenario is
on the right. Errors for hâi are plotted at the top and log
saturated conductivity h f̂ i errors are at the bottom; the plots
for the two parameters are similar for a given scenario. Keep
in mind that these error plots are plots of the ratio of the
‘‘estimated’’ value divided by the ‘‘true’’ value. The bias is
especially significant when the actual values of h f i and hai
are both small (lower left corner of each figure), represent-
ing a poorly sorted sandy silt. For example, when estimating
hâi errors in the log-flux ratio, ln(Q̂1/Q̂2) from (44), are
higher for small hai and Q̂1 tends to be overestimated, while
Q̂2 is underestimated at small h f i. It is obvious from (44)
that both of these conditions cause overestimation of â.
When contact error is also present (Figure 1b), hâi is
significantly overestimated at low hai for all values of
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h f i. Contact errors cause underestimation of Q̂2, leading to
an increase in the log-flux ratio and erroneously high â.
These effects are most pronounced at low hai, where the
true flux ratio tends to be very small.
[25] Errors in estimated log saturated conductivity h f̂ i

increase at small h f i, on the left side of the parameter space
plots in Figures 1c and 1d. From (45) we can see that f̂ is
proportional to the log of both Q̂1 and â. These two
parameters tend to be overestimated at small h f i, causing
overestimation of h f̂ i. When the contact error is also
present (Figure 1d), â tends to be greatly overestimated at
low hai, leading to significant overestimation of h f̂ i.
[26] Errors in the estimated variogram parameters bear

less of a resemblance to those of the work of Holt et al.
[2002]. The variance of the estimated exponential parameter
â, or s2â, follows a similar pattern to the published results
and increases with decreasing h f i and hai, as shown in the
lower left corner of Figure 2a for the observation error
scenario. However, the magnitude of the error metric in this
plot is much greater than that published, because the
variance of a is much smaller here and because the metric
is a ratio and is divided by this small variance. Also in
contrast to the published results, lâ, the correlation length
of â, tends to underestimate the correlation length of a
(Figure 2b), because variability due to errors in Q̂1 and Q̂2

tends to mask the true spatial structure of a when sa
2 is

small. As h f i decreases these effects are more pronounced.
When contact errors are also present, error in Q̂2 becomes
independent of the sampled hydraulic properties, especially
at low hai. This effectively eliminates the spatial correlation
of â, and the statistics s2â and lâ are greatly underestimated,

especially in the lower right corner of parameter space
(Figures 2c and 2d).
[27] Errors in the variance, s2

f̂
, of estimated log saturated

conductivity, f̂ , and its correlation length, lf̂ (Figure 3),
are very similar to those of the work of Holt et al. [2002]
if only observation errors are present (upper part of figure).
When contact errors are present (lower part of figure),
however, errors in s2

f̂
are smaller than before because the

variograms and cross-covariogram terms containing a con-
tribute little to the estimated variance. In the study by Holt et
al. [2002], these terms are much larger and cause significant
overestimation of s2

f̂
.

5. Stochastic Model Errors

[28] In this section we present stochastic model predic-
tions for both the observation and contact error scenarios.
We first consider errors affecting predictions of the mean
velocity hû1i. Because hû1i is a first-order approximation it
is the same for both the 3D isotropic and the 1D perfectly
stratified cases. We then present the errors for the velocity
variance s2û1 that occur for each of these two cases.
Finally, we present errors for the integral scale of the
velocity Iu1 and for 1D large-scale, longitudinal macro-
dispersivity.
[29] The biased spatial statistics of f̂ (x) and â(x) lead to

erroneous stochastic model predictions in two ways. First,
statistical parameter errors also produce bias, or systematic
distortion, in the model predictions. As with parameter
errors, these prediction errors are depicted using contour
maps of ratios; in this case they are ratios of the ‘‘esti-
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mated’’ prediction divided by the ‘‘true’’ prediction, plotted
across the parameter space. Second, erroneous spatial sta-
tistics can cause some model assumptions to be violated.
For the first-order models considered here the critical
assumptions are that s2qe=hqei

2 
 1, required for (9), and
sah
2 
 1, required for deriving (15). This last condition is

more restrictive, and regions of the parameter space where
s2
q̂e
=hq̂ei

2
> 1 are excluded from the plots. The excluded

area increases with mean tension hhi and, in the contact
error scenario, occupies the entire parameter space when
tension reaches hhi = 1000 cm. Consequently, the presented
error plots are for selected mean tensions hhi of 10, 100, and
900 cm, representing wet to dry soils.
[30] Errors in the mean velocity due to observation errors

are shown for the three different mean tensions hhi in
Figure 4. Under very wet conditions (Figure 4a), hû1i is
most sensitive to the geometric mean of saturated conduc-
tivity K̂s, and errors in the mean velocity mimic errors in
h f̂ i (Figure 1c). As a result, hû1i is accurately estimated at
large h f i (right side of parameter space) and is overestimated
by more than a factor of 5 at small h f i (left side of parameter
space). Some deviations occur at high hai (upper portion of
parameter space), because overestimation of hâi leads to a
reduction in hû1i. At moderate tensions hhi (Figure 4b),
errors in hû1i change significantly, and the excluded region,
s2
q̂e
=hq̂ei2 > 1, occupies roughly a third of the parameter

space, concentrated in its upper left corner (e.g., representing
well sorted, sandy silt). Along the boundary of the excluded
region, overestimation of hâi leads to underprediction of
hû1i. In the lower left corner where h f i and hai are small,
the mean velocity hû1i remains dominated by errors in the
geometric mean K̂s and is overestimated. At very high
tension hhi (Figure 4c), the excluded region occupies

most of the parameter space. For example, even without
measurement error s2qe=hqei

2
is greater than 1 for hai

exceeding 0.02 cm�1. Regardless of the value of tension
hhi, the mean velocity hû1i is accurately estimated at large
log saturated conductivity h f i, because hâi and h f̂ i are
accurately estimated.
[31] When contact errors are also present the mean

velocity hû1i errors have similar features (Figure 5). At
low tension (Figure 5a) hû1i reflects the errors in h f̂ i
(Figure 1c) and is overestimated by up to a factor 20. At
progressively higher tension hhi (Figures 5b and 5c), the
error decreases, and the narrow accurate region for hû1i,
defined by hû1i/hu1i between 0.95 and 1.05, sweeps across
the parameter space. At very high tension hhi (Figure 5c),
the mean velocity hûi is always underestimated, because
this narrow accurate region has passed out of the parameter
space.
[32] Errors in the velocity variance, s2û1 , are shown for the

observation error scenario in Figure 6 and for the contact
error scenario in Figure 7. In these figures tension increases
from top (wet) to bottom (dry). The 3D isotropic flow
model is on the left, and the 1D model is on the right. At
low tensions, errors in the velocity variance s2û1 mimic
errors in the mean velocity hû1i. At higher tensions, the
error pattern changes and becomes more complex, reflecting
errors in the correlation lengths and variances of â and f̂ . As
hai increases and h f i decreases, toward the boundary of the
feasible region, errors in s2û increase, because the cross-
covariance s2

q̂q̂e
from (22) is overestimated due to errors in

s2â and in the products of hâi and hhi. In the observation
error scenario (Figure 6), s2û1 is accurately estimated in an
irregular region in the lower right corner of the parameter
space, where hai is small and h f i is large (poorly sorted

a) 

10-110-4 10-3 10-210-5

M
ea

n 
α 

(1
/c

m
)

10-1

10-2

10-3

10-4

Geometric Mean Κs (cm/s)
 0

.1  0
.5

 0
.7  1

0.
9

0.
3

b)

10-110-4 10-3 10-210-5

M
ea

n 
α 

(1
/c

m
)

10-1

10-2

10-3

10-4

Geometric Mean Κs (cm/s)

 0
.1

 0
.3

 0
.7

 0
.9

10-110-4 10-3 10-210-5

M
ea

n 
α 

(1
/c

m
)

10-1

10-2

10-3

10-4

Geometric Mean Κs (cm/s)

c)

 0.3

 0
.5

 0
.7

 0
.9  1

d)

10-110-4 10-3 10-210-5
M

ea
n 

α 
(1

/c
m

)

10-1

10-2

10-3

10-4

Geometric Mean Κs (cm/s)

 0.9

0.7

Figure 3. Ratio of the ‘‘estimated’’ to ‘‘true’’ variogram parameters for f. Observation error scenario:
errors in (a) variance and (b) correlation length. Contact error scenario: errors in (c) variance and (d)
correlation length. Accurate regions (‘‘estimated/true’’ between 0.95 and 1.05) are shaded.

SBH 3 - 8 HOLT ET AL.: ERROR IN UNSATURATED STOCHASTIC MODELS



coarse sands), regardless of mean tension. In the contact
error scenario (Figure 7), a narrow accurate region for s2û1
sweeps across the parameter space as the mean tension
increases.

[33] While the s2û1 error patterns are the same for both the
3D and 1D cases, the magnitude of the errors are strikingly
different (Figures 6 and 7). During 1D flow, s2û1 error may
be over four orders of magnitude larger than during 3D
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flow. This result is not surprising, because measurement
errors increase the apparent heterogeneity of â and 1D flow
samples all of the heterogeneity, while flow diverts around
low permeability zones during 3D flow.
[34] Errors in the integral scale of the 1D velocity, Iu1 , are

presented in Figure 8 and tend to be inversely proportional
to errors in the velocity variance s2û1 . In the observation
error scenario, Iu1 is accurately estimated in a small region
in the lower right corner of parameter space, with low hai
and h f i large, regardless of mean tension. In the contact
error scenario, the velocity integral scale is never accurately
estimated. The integral scale of velocity tends to be under-
estimated as mean tension increases, because the velocity is
increasingly sensitive to errors in â.
[35] Errors in the 1D longitudinal macrodispersivity, A1,

are small (Figure 9), because of compensating errors in hû1i,
s2û1 , and Iu1 (41). In the observation error scenario, A1 is
accurately estimated across nearly the entire parameter
space. In the contact error scenario, however, A1 slightly
overestimated. These results suggest that the 1D macro-

dispersivity is a fairly robust ensemble statistic at large
travel distances.
[36] These parameter space plots for different predictions

share certain common features. When only observation
errors are present, a ‘‘sweet spot’’ occurs in the lower right
corner of the parameter space, for most predicted variables.
Here the log saturated conductivity h f i is large and the
exponential parameter is hai small, representing a poorly
sorted coarse sand. Estimates of the spatial statistics for
parameters â and f̂ are accurate, and ensemble model
predictions remain accurate regardless of tension. When
contact errors are present, however, the accurate regions for
the spatial statistics of â and f̂ do not overlie one another in
parameter space. As a result, no sweet spot occurs, and a
narrow region of accurate ensemble predictions shifts
through the parameter space as tension changes. In general,
the sweet spot is largest for macrodispersivity A1 because of
compensating errors, followed by mean velocity hû1i which
depends only on hâi and h f̂ i, and is smallest for the
velocity variance s2û1 and the velocity integral scale Iu1
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which depends on the variance and correlation lengths of â
and f̂ .

6. Neglected Errors

[37] In this illustrative example we include only very
small and simple forms of error and neglect many other
types of error likely to affect tension infiltrometer measure-
ments. In the work of Holt et al. [2002], we explained that
actual tension infiltrometer flux rate errors are likely to be
higher than those considered here. In tension infiltrometer
reproducibility studies, Holt et al. [2002] found that sQ

2 =
0.06 cm6/s2, more than an order of magnitude larger than
the value sQ

2 = 0.00165 cm6/s2 used here. In addition, errors
in applied tension at the disk source may be much larger
than considered here, because many tension infiltrometers
do not use transducers in the base plate. We have also
assumed that tension infiltrometer flux rates have truly
reached steady state. In the field, however, it is nearly
impossible to reach true steady state [Logsdon, 1997].

[38] We also considered a simple inversion-model error
caused by poor contact between the tension infiltrometer and
the sampled medium. Other types of inversion-model error,
however, may be difficult to quantify or treat. These errors
may include subsample heterogeneity, viscosity changes
during infiltration, nonuniform wetting phase structure intro-
duced by subsample scale heterogeneity or air entrapment,
and incorrect parametric models for relative permeability.
[39] Given the wide range of types of error that may

affect field measurements of unsaturated hydraulic proper-
ties, it may be impossible to model all errors that affect field
measurements of unsaturated hydraulic properties. Conse-
quently it may not be possible to use error analysis to
determine suitable parameter spaces for a particular field
device or to remove bias from estimated spatial statistics.
This suggests that stochastic models based on these kinds of
measurements might be too uncertain for use in decision-
making processes.
[40] In this study we use every point in a reality to

estimate spatial statistics. However, it is not possible to

Figure 7. Ratio of the ‘‘estimated’’ to ‘‘true’’ velocity variance predicted using data from the contact
error scenario. Results for 3D isotropic flow in (a)–(c) and 1D flow in (d)–(f ). Results are shown for three
different mean tensions hhi (values shown on graphs). Accurate regions (‘‘estimated/true’’ between
0.95 and 1.05) are shaded, and regions where s2

q̂e
=hq̂ei

2
> 1 are patterned.
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sample everywhere, and estimates of spatial statistics are
uncertain because of incomplete sampling and nonideal
sample locations (structural errors). When measurement
errors are present, structural errors increase significantly
and the additional uncertainty can preclude reliable estima-
tion of spatial statistics [Holt, 2000].

7. Summary and Implications

[41] We use Monte Carlo error analyses to illustrate the
impact of hydraulic property measurement errors on sto-
chastic model predictions. We construct a series of idealized
artificial realities (spatially correlated random fields) com-
pletely described by the Gardner–Russo parametric model
[Gardner, 1958; Russo, 1988]. Means of the parameters
a(x) and f (x) = ln[Ks(x)] are varied between 221 different
realities to reveal the connection between true property
values and prediction errors. Properties are estimated using
simulated tension infiltrometer measurements subject to
only small simple errors. We consider two error scenarios

selected to show how different types of error affect stochas-
tic model predictions. The first is an observation error
scenario with only errors in estimates of tension infiltrom-
eter flux rates and applied pressures at the disk source. The
second is a contact error scenario that includes a boundary
condition error due to poor contact between the tension
infiltrometer disk and the sampled medium. The spatial
statistics (mean, correlation length, and variance) for both
the true and estimated parameter fields are determined using
all locations within each reality to insure that model
prediction errors reflect only errors in property measure-
ments. Extensions of the unconditional stochastic flow and
transport models of Yeh et al. [1985a, 1985b] (3D statisti-
cally isotropic) and of Zhang et al. [1998] (1D perfectly
layered) are used to predict the ensemble mean, variance,
and integral scale of velocity and the longitudinal macro-
dispersivity. Errors are quantified using the ratio of the
‘‘estimate’’ to the ‘‘true’’ value.
[42] Although the general trends are similar, errors in the

parameter spatial statistics differ from the results presented
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Figure 8. Ratio of the ‘‘estimated’’ to ‘‘true’’ 1D integral scale of the velocity predicted using data from
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by Holt et al. [2002]. Major differences reflect the smaller
variance of a due to our assumption here of a normal
distribution for a, with fixed CV = 0.1. Because the spatial
structure of â is less varied, it is easily obscured by
measurement errors, resulting in larger errors in the variance
and under estimates of correlation length. In addition,
variogram and cross-variogram terms containing a are
smaller, leading to less error in sf̂

2 when contact errors are
present.
[43] The errors in the spatial statistics of parameters f̂ (x)

and â(x) cause prediction errors for stochastic flow and
transport models in two ways: (1) critical model assump-
tions may be violated, limiting the parameter space usable in
the model and (2) model predictions become biased or
systematically distorted. In our study, the assumption
required for the first order approximations, s2q̂e=hq̂ei

2 
 1,
is violated across roughly a third of the parameter space in
moderately dry conditions (hhi = 100 cm), and across more
than one half of the parameter space under very dry
conditions (hhi = 900 cm). When the mean tension is

sufficiently high, e.g., hhi = 1000 cm, and contact errors
are present, the assumption is violated across the entire
parameter space.
[44] Where critical assumptions are valid stochastic model

predictions still show significant error. The magnitude and
pattern of error changes with mean tension. Mean velocities
may be overestimated (wet conditions) or underestimated
(dry conditions) by roughly an order of magnitude. Errors in
velocity variances change with the dimensionality of flow,
and the magnitude of the error decreases with mean tension.
Errors are generally much worse for 1D stochastic flow,
because all heterogeneity is sampled. The velocity variance
is overestimated by up to three orders of magnitude during
3D flow and eight orders of magnitude during 1D flow. The
1D velocity integral scale varies as the inverse of the velocity
variance. Consequently, it is generally underestimated by as
much as five orders of magnitude. The estimate of the 1D
longitudinal macrodispersivity is surprisingly robust. It gen-
erally shows relatively small error across most of the
parameter space.
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[45] When only observation errors occur a sweet spot
develops in parameter space coincident with poorly sorted,
coarse sand (low a and large Ks). In the sweet spot, all
stochastic model predictions are accurate, because the
spatial statistics of f̂ (x) and â(x) are accurate. When
contact errors are present, no sweet spot develops, because
the accurate regions for the spatial statistics of f̂ (x) and
â(x) do not overlap.
[46] Our results suggest that property measurement errors

can significantly impact stochastic model predictions and,
by implication, the decisions based on those predictions. If
property measurement errors are known and can be quanti-
fied, as in our case, it is possible to remove the effects of
these errors. Unfortunately, it is impossible to explicitly
know all errors a priori, and the number and potential effect
of measurement errors is great. The consequences of
unknown property errors are potentially severe. For the
error scenarios considered here, one could unknowingly
underpredict mean travel times by over an order of magni-
tude under wet conditions and overestimate travel times by
nearly an order of magnitude under drier conditions.
[47] Our results also illustrate an important limitation of

stochastic models. If input spatial statistics are not accurate,
the magnitude of stochastic model errors changes with flow
conditions. A sweet spot occurs only in that part of the
parameter space where all input spatial statistics are accu-
rately estimated. When measurements are affected only by
observation errors, it is more likely that a sweet spot will
develop in some part of a parameter space. When inversion-
model errors affect measurements, it is less likely that the
spatial statistics will be accurately estimated in an over-
lapping portion of the parameter space, and there will be no
sweet spot. Similar behavior is likely when multiple proper-
ties are estimated from different methods, with varying
measurement support, or at dissimilar timescales.
[48] Most practical applications of stochastic models

involve conditioning on site-specific data and the use of
boundary conditions and parameter fields that produce
nonstationary flow conditions. When used in a decision-
making process these models offer an advantage, because
solutions are constrained by site-specific data and estimated
second and higher moments are smaller, implying lower
uncertainty and increased confidence in the results. When
the hydraulic property data have been estimated in the
presence of observation or inversion-model errors, however,
the increased confidence may not be warranted, as bias in
the results may erode the advantages of conditional
approaches. This issue should be the subject of future
research.
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